PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering.
نویسندگان
چکیده
A modified degumming technique, involving boiling in 0.25% Na2CO3 with addition of 1% sodium dodecyl sulphate and intermittent ultrasonic agitation, was developed for knitted silk scaffolds. Sericin was efficiently removed, while mechanical and structural properties of native silk fibroin were preserved. Biocompatible and mechanically robust hybrid nano-microscaffolds were fabricated by coating these degummed silk scaffolds with an intervening adhesive layer of silk solution followed by electrospun poly-lactic-co-glycolic acid (PLGA) nanofibers. Cell proliferation on the hybrid silk scaffolds was improved by seeding cells on both surfaces of the flat scaffolds. Rolling up and continued culture of the cell-seeded hybrid scaffolds yielded cylindrical constructs that permitted cell proliferation, extracellular matrix deposition, and generated ligament/tendon graft analogs. Although PLGA-based hybrid scaffolds have earlier been proposed for dense connective tissue engineering, rapid biodegradation of PLGA was a drawback. In contrast, the underlying strong and slowly-degrading microfibrous silk scaffold used in this study ensured that the hybrid scaffold maintained adequate mechanical properties for longer periods, which is vital for continued support to the injured ligament/tendon throughout its healing period.
منابع مشابه
Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering
BACKGROUND To mimic the muscle inspired cells adhesion through proteins secretion, the lamination of collagen-hydroxyapatite nanorod (nHA) composite nanofibers has been carried out successfully on polydopamine (PDA)-coated microfibrous polylactide-co-glycolide (PLGA) fabrics. The lamination of collagen-hydroxyapatite composite nanofibers on polydopamine-coated microfibrous PLGA fabrics was carr...
متن کاملA bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.
An ideal scaffold that provides a combination of suitable mechanical properties along with biological signals is required for successful ligament/tendon regeneration in mesenchymal stem cell-based tissue engineering strategies. Among the various fibre-based scaffolds that have been used, hybrid fibrous scaffolds comprising both microfibres and nanofibres have been recently shown to be particula...
متن کاملEffect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds
The broad application of electrospun nanofibrous scaffolds in tissue engineering is limited by their small pore size, which has a negative influence on cell migration. This disadvantage could be significantly improved through the combination of nano- and microfibrous structure. To accomplish this, different nano/microfibrous scaffolds were produced by hybrid electrospinning, combining solution ...
متن کاملIn vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds
Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...
متن کاملStimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices
BACKGROUND In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 95 1 شماره
صفحات -
تاریخ انتشار 2010